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Abstract 

In calculating the lattice-energy hypersurface by the 
systematic variation of the molecular rigid-body 
parameters and the lattice constants, the ranges to be 
scanned depend on the molecular symmetry and on the 
space group. A generalization of Hirshfeld's approach 
[Hirshfeld (1968). Acta Cryst. A24, 301-311] applic- 
able to the case of variable lattice constants is 
suggested. The symmetry of the multidimensional 
parameter space is defined by the direct product of 
the molecular point group and a normalizer NA(F ) of 
the space group F. The normalizer N~ (F) is a group of 
affine transformations of the crystal axes that leave 
invariant the coordinates of equivalent positions. An 
asymmetric unit of the parameter space is obtained 
through keeping the lattice constants within such 
ranges that satisfy the Niggli reduced-cell conditions. 

Introduction 

In molecular-packing analysis, the most stable crystal 
is usually determined through minimization of the static 
lattice energy with respect to the set of structural 
variables specifying the crystal configuration (Kitai- 
gorodskii, 1973). Considering a crystal with one 
molecule per crystallographic asymmetric unit, one 
may define any possible crystal structure by specifi- 
cation of its symmetry, the three molecular centre- 
of-mass coordinates, t x, ty, t~, the three Eulerian angles, 
~0, 0, ~,, and the six lattice constants, a, b, c, a, fl, y. 

A consistent application of packing analysis involves 
mapping of the lattice-energy hypersurface by sys- 
tematic variation of the structural variables, or con- 
struction of a grid of trial structures serving as starting 
points for subsequent minimization. Owing to crystal 
symmetry different sets of the twelve parameters may 
describe the same crystal configuration. The problem 
of ranges to be scanned, which take into account the 
symmetry equivalences, then arises. A particular case 
of this problem has been discussed by Hirshfeld (1968) 
who derived the symmetry relations between the 
molecular parameters tx, ty, t z, ~o, O, q/for a crystal with 
fixed cell dimensions. Hirshfeld's considerations were 
intended mainly for application in trial-and-error 
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solutions of the phase problem. They were also 
employed in structure determinations by molecular- 
packing analysis when the cell dimensions were 
available from experiment (Williams, 1969; Dzyab- 
chenko, Zavodnik & Belsky, 1979). 

In lattice-energy calculations with variable lattice 
constants a more general approach is called for. This is 
the subject of the present work. It concerns only 
triclinic, monoclinic and orthorhombic crystals while 
those of higher symmetry are treated in terms of 
Hirshfeld's original theory. The results can be directly 
applied in calculations of the global lattice-energy 
minimum, and may also be useful whenever a com- 
parison of crystal structures is made, say, when 
comparing isomorphous structures. 

Invariant transformations of the unit-cell axes 

The equivalent sets of structural variables are produced 
by two factors (Hirshfeld, 1968): firstly, the (non- 
crystallographic) molecular point symmetry, and, 
secondly, the invariance of the crystal structure with 
respect to transformations of the crystal axes. Of these 
transformations, Hirshfeld considered the rotations 
(and rotatory reflections) of the axes that leave 
invariant the table of coordinates of equivalent 
positions, with the unit-cell dimensions being un- 
changed. The full list of such transformations defines 
the so-called Cheshire group. The Cheshire group is a 
symmetry-group derivative from a given space group. 
It may be readily obtained by considering the sym- 
metry of a three-dimensional pattern representing the 
space group. In other words, in deriving the Cheshire 
group the original space group is treated as a 'structure' 
whose elements are the space-group symmetry 
elements. 

In our case, the requirement that the unit-cell 
dimensions must be invariant under axial trans- 
formations should be rejected. The general rule is then 
formulated as a set o f  transformations of  the crystal 
axes that leave invariant the coordinates o f  equivalent 
positions. There are three types of transformations 
which fulfil this rule: 

(a) a shift of origin; 
(b) reversal and/or interchange of unit-cell axes; 
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(c) replacement of unit-cell axes by their linear 
combinations (in monoclinic and triclinic crystals). 

Transformations (a) alter the molecular parameters 
t x, ty, t~, ~0, 0, ~, while leaving the unit-cell dimensions 
unchanged; (b) change the unit-cell constants although 
the cell parallelepiped remains, as a whole, invariant; 
(c) distort this paraUelepiped (while the lattice, of 
course, remains invariant). The (c)-type transformation 
obviously includes (b). Examples of combined trans- 
formations of types (a) and (b) and (a) and (c) in a 
crystal with space group P2~ are shown in Fig. 1. 

We now write any transformation of type (a), (b) or 
(c) or their combination as an affine operator (S,x) 
which involves a linear unit-cell transformation 

with the matrix 

Ial I:) b '  = S , 

C t 

/ / 1 2  n 1 3 ~  

\ F / 3 I  / 7 3 2  / ' / 3 3 /  

where nij are integers; and a shift of the origin x, whose 
components are fractions of the unit-cell edges a, b, e. 

On going from a, b, c to a', b', e' the fractional 
coordinates x transform as 

x' = ( S - l )  T x -  ~, (1)  

where (S- l )  r is the transposed inverse of S. If the 
transformation S origin is shifted with respect to the 
space-group origin by x 0 a somewhat different expres- 
sion should be used: 

x '  = ( S - 1 )  r ( x  - -  x o )  + x o - -  x,  ( l a )  

instead of (1). 
The problem is to derive the group {S, x} of the 

unit-cell transformations that leave invariant the 
equivalent coordinates of a given space group. We shall 
call this group the affine normalizer Na (F) of the space 

',. 
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Fig. 1. Examples of invariant unit-cell transformations in a crystal 
with space group P2t: a' = - e ,  e' = a; a" = - a  - e, e"  = 

- 2 a -  e. 

group F, since its properties are consistent with the 
definition of a normalizer in group th6ory (Kuro~, 
1967). The space group F is a subgroup of its 
normalizer NA(F) (its normal divisor) in the complete 
group of affine transformations. Note that in this 
terminology the Cheshire group is also a normalizer of 
the space group, but in the complete group of 
movements. 

For space groups of the tetragonal, hexagonal and 
cubic systems the normalizers N A are identical to the 
corresponding Cheshire groups. The subsequent con- 
sideration is thus limited to the space groups of lower 
symmetry, i.e. of the orthorhombic, monoclinic and 
triclinic systems. 

O r t h o r h o m b i c  c r y s t a l s  

To derive the normalizer N A of an orthorhombic space 
group we consider again the symmetry of the corre- 
sponding space-group pattern. The actual dimensions 
of this pattern are now ignored while the type of 
symmetry element and its direction is signifcant. 
Consequently, we may take the cell dimensions a, b, c 
of equal length to obtain the highest derivative 
symmetry. The symmetry of the resulting space-group 
pattern drawn in cubic axes defines a derivative group 
which we call the extended Cheshire group, since it has 
a close analogy with Hirshfeld's Cheshire group but 
includes extra symmetry. The 59 orthorhombic space 
groups are classified in Table 1 according to their 
extended Cheshire groups. Hirshfeld's Cheshire groups 
are also given in this table for comparison. Each 
extended Cheshire group is specified by its Hermann-  
Mauguin symbol, referred to its own unit cell, and by 
the axes of this cell defined in terms of the space-group 
axes a, b, c. According to Hirshfeld (1968) we use the 
symbol Z 1 to designate degenerate primitive 'lattices' 
with an axis of vainishing length e. Such lattices are 
derived from polar space groups in which arbitrary 
shifts of origin are admitted. 

An extended Cheshire group provides a set of 
unit-cell transformations {S, x} which form the nor- 
malizer. Although we have derived this set using cubic 
axes it will obviously be the same for an arbitrary 
orthorhombic cell, while the geometric sense of 
operations (S,'0 is altered. Namely, the elements of the 
so-called space homology (Mikheyev, 1961) appear 
instead of the corresponding symmetry elements. We 
can now conclude that the normalizer N A of an 
orthorhombic space group is in fact the space- 
homology group isomorphous to the extended Cheshire 
group. The complete theory of the space-homology 
groups as well as their terminology is insufficiently 
developed at present. Thus, the extended Cheshire 
group provides a convenient way to define the affine 
normalizer in terms of conventional symmetry groups. 
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Triclinic and monoclinic crystals 

In oblique crystal systems, where transformations of 
general type (c) take place, the description of  the affine 
normalizer through an isomorphous symmetry group is 
insufficient. [Note that such a description is possible 
only for a part of  type-(c) transformations, if we draw 
the space-group pattern in specially chosen non- 
orthogonal axes. For example, the derivative symmetry 
of  the space group P2Jm in hexagonal axes is P2/m 
6/m 2/m. The operation 6 ~ in this group with S = 1 0 1/ 
0 1 0 / - 1  0 0 then corresponds to the type-(c) 
transformation a' = a + c, b' = b, c' = - a  in P2~/m. 
However, the use of  non-orthogonal axes results in the 
loss of some important operations of the normalizer, 
which appear as derivative symmetry elements of  the 
space-group pattern taken in cubic axes. Thus, the 
operation S = 1 0 0 /0  1 0 /0  0 - 1  is absent in P2/m 
6/m 2/m and present in P2/m 4/m 2/m, the derivative 
symmetry group of  P2Jm in cubic axes.] Fortunately, 
the invariant properties of the two triclinic and 13 
monoclinic space groups are quite simple owing to a 
limited number of available symmetry elements, and 
they can be written in terms of  constraints imposed on 
matrices S and vectors x. 

In the triclinic space groups, P1 and P i ,  the only 
requirement on S is that the number of lattice points 
within a unit cell should be invariant, i.e. 

det (S)  = +1.  

The three components of  x may assume arbitrary real 
values in P1 which allows arbitrary shifts of  the 
space-group origin. In P1 the components of x, r x, ry, r~ 
are k/2, l/2, m/2 (k,l,m = 0, + 1, +2  . . . .  ), respectively, 
since the shortest displacement of the space-group 
origin is 1/2 along each cell axis. 

In the space groups of the monoclinic system (b-axis 
unique) the integers n~2, n2~, n23,//32 are zeros and n22 = 
+ 1. In addition to the general requirement det (S)  = + 1 
there may exist further conditions for the remaining n u 
depending on the presence of a glide plane and/or 
face-centering translation. These conditions are sum- 
marized in Table 2. 

Calculation of  the equivalent sets of  structural variables 

We first derive a law by which the Cartesian coordin- 
ates are transformed on going from one set of  unit-cell 
axes, a, b, c, to another set, a', b', c'. Let A = 
A(a,b,c,a,fl,7) be a matrix which relates the fractional 
coordinates x, referred to a, b, e, to the Cartesian 
coordinates X, so 

X = A x  

Table 2. The invariant unit-cell transformations (S, x) 
forming the affine normalizers N A of  the space groups 

of monoclinic system 

General condition: 

det ( S )  = + 1, 

where S = nil 0 n13/0 + 1 0 / n ] ~  0 //33, nij are integers, k,l,m = 
0 ,+  1 ,+2 . . . .  ; e,f,g are arbitrary real numbers. 

Space group 

P2,P2~ 
Pm 
P2/m,P2Jm 

Pc 
P2/c,P2Jc 

C2 
Cm 
C2/m 
Cc 
C2/c 

Conditions for nij 

None 

F/I i,F/33 odd,/131 even 

nil.n]3 odd. n~3 even 

rx, ry,r~ 

k/2,f,m/2 
e,U2.g 
k/2.1/2.m/2 

e,I/2,g 
k/2,1/2,m/2 

k/2,f,m/2 
e.l/2,g 
k/2,1/2,m/2 
e,I/2 + n~l/4,g 
k/2 + n31/4.U2 + n3J4,m/2 

Table 1. The 59 orthorhombic space groups classified by the corresponding affine normalizers written in terms 
.of extended Cheshire groups 

a, b, e are the axes of  the conventional crystallographic unit cell. The extended Cheshire group is defined as a true derivative symmetry 
group if lal  = Ibl = le l .  For an arbitrary orthorhombic cell it represents an isomorphous space-homology group through the set of  
operations {S,x}. e is an infinitesimal quantity used in defining vanishing axes of the derivative unit cell. 

If the space-group origin is chosen following International Tables for  X-ray Crystallography (1952) then it coincides with the extended 
Cheshire-group origin, i.e. x 0 = 0 in equation ( la)  (see text), everywhere except Fdd2 and Imma, for which the components of x 0 are 
1/4.0.0 (or  0 .1 /4 .0) .  

Extended Cheshire group 
Cheshire group Unit cell (Hirshfeld, 1968) 

Pmmnt a/2 x b/2 x e/2 Pmmm 
Zbmmn a/2 x b/2 x ec Zlmmm 
P4/inmm a/2 x b/2 x c/2 Pmmm 
Z14/mmm ( a -  b)/4 x (a + b)/4 x ee ZImmm 
ZI4/mmm a/2 x b/2 x ce ZXmmm 
Z~4/nbm a/2 x b/2 x ee ZIban 
P42/mmc a/2 x b/2 x e/2 Pmmm 
Pm3 a/2 x b/2 x e/2 Pmmm 
Pm3m a/2 x b/2 x e/2 Pmmm 
Pm3n a/2 x b/2 x e/2 Pmmrn 
Pn3m a/2 x b/2 x e/2 Pnnn 
Im3m a/2 x b/2 x e/2 Immm 

Corresponding space groups 

Pmma,Pnna, Pmna,Pcca,Pbcm,Pbcn,Pnma,Cmcm,Cmca,Ccca 
Pmc 2 .Pma 2,Pca 2 .Pnc 2,Pmn 2 ~,Pna 2 i,Cmc 2 I.A mm2,A bm2.A ma2,A ba2Jma2 
P2~2~2,C222.Pccm,Pban,Pbam.Pccn,Pnnm,Pmmn.Cmmm.Cccm.Cmma.lbam 
Cmm2 
Pmm2,Pcc2,Pba2,Pnn2.Ccc2,Fmm2.Imm2.1ba2 
Fdd2 
P2221 ,C222 . lmma 
Pbca 
P222,I222,Pmmm.Pnnn.Fmmm.Immm 
P212121,121212pIbca 
Fddd 
F222 
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and 

x = A -l X. (2) 

For the primed axes similar equations can be written: 

X' = A' x', 

x' = A'-I  X', (3) 

where A '  = A(a ' , b ' , c ' , a ' , f l ' , y ' )  is a matrix obtained by 
substitution of the new lattice constants into the 
expressions for the matrix A elements. Substituting (2) 
and (3) into (1) we obtain 

A ' - l  X' = (S- l ) rA -1X - '~, 

or X'  = A ' ( S - I ) r A - I X  - A '  ~. (4) 

The new lattice constants a ' ,  b', c', a ' ,  i f ,  y' can in 
general be derived from the corresponding metric 
matrix 

G'  = S G S  r, (5) 

where 

l 
a ab cos y ac cos f l )  

G = ab cos y b 2 bc cos 

a c  c o s  /~ bc  c o s  a c 2 

is the metric matrix written in the axes a, b, c. Equation 
(5) describes the transformational properties of 
the metric tensor ( In terna t iona l  Tables  f o r  X - r a y  
Crys ta l lography,  1959) written in matrix notation. 

Suppose now that the molecular structure is defined 
by a set of Cartesian atomic coordinates X °. Any 
possible molecular position is then given by 

X = R X ° + A t, (6) 

where the matrix R specifies rotation of the orthogonal 
molecular axes through the Eulerian angles ¢p, 0, ~; t is 
a vector whose components are the molecular centre 
fractional coordinates t x, ty, t z. We assume here 
temporarily that both proper and improper rotations 
are defined by means of an additonal two-valued 
parameter e, which specifies the chirality of the 
molecular axes (Hirshfeld, 1968). Thus, R = 
R(e,~o,O,q/). Substituting (6) into (4), we get 

X '  = A ' ( S - I ) r A - 1 R X  ° + A'(S-I )  r t -- A' ~. 

An equation similar to (6) can be written for the 
coordinates X' on introducing the equivalent set of 
variables: 

X' = R ' X  ° + A' t'. 

Since the two last equations must hold for any X ° we 
get 

R '  = A ' ( S - ~ ) r A - 1 R  (7) 

and 

t' = (S-1)r t -  '~. (8) 

These relations express the effect of any unit-cell 
transformation (S,~) on the rotation R and shift of the 
molecular origin t. 

The equation which describes the effect of molecular 
symmetry may be taken directly from Hirshfeld 
(1968): 

R ' = R M .  (9) 

Here M is a matrix of the point-group symmetry 
operation which relates the coordinates X ° and X °' of 
any pair of symmetry-identical atoms within the 
molecule. 

It is convenient to combine (7) and (9) to give 

R(cp' ,O',~')  = A ' (S-1)rA-1R(~o,O,~)M.  (10) 

The parameter e in (10) is dropped since the 
requirement 

det (S) det (M) > 0 (11) 

is implied to hold for all possible combinations of S and 
M. The list of S for a given space group is provided by 
the corresponding normalizer. The condition (11) 
ensures that the resulting rotation S is proper. All 
combinations of S and M for which (11) does not hold 
should be rejected, since they generate the same 
equivalent structures but of opposite chirality. 

For a general transformation S, which changes the 
lattice constants, the equivalent Eulerian angles cannot 
be explicitly derived but can be calculated numerically 
from the matrix R' elements using (7) or (10). 

If S leaves the lattice constants invariant, so that 
A' = A, (7) reduces to that given by Hirshfeld (1968), 
and there exist explicit relations between equivalent sets 
of Eulerian angles for any symmetry operation of non- 
cubic space groups. 

It may be shown that for S of diagonal form, (10) is 
simplified radically: 

R'  = S R M .  

This equation shows that in a triclinic crystal the 
Eulerian angles are transformed by a diagonal-matrix 
operation S in the same manner as in an orthorhombic 
crystal under the action of the corresponding twofold 
axis, mirror plane or inversion centre. 

Asymmetric unit in space of  structural variables 

Let us suppose that the intermolecular potential is 
defined and our aim is to map, for a given space group 
and molecular geometry, the lattice-energy surface by 
systematic variation of all structural variables. The 
problem is to choose such scanning ranges within 
which all possible structures will be generated and none 
of them will occur twice owing to symmetry. In other 
words, an asymmetric unit in the space of structural 
variables is to be determined. 
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Hirshfeld (1968) has described a way of choosing an 
asymmetric unit in the space of the molecular 
parameters t x, ty, t~, tp, O, v/. His procedure is applicable 
in our case too, provided that the extra equivalences 
due to the variability of the lattice constants are taken 
into account. 

It is now convenient to consider separately the 
equivalent sets of the lattice constants a, b, e, 0 ,̀ fl, y. 
The list of equivalent lattice-constant sets gives all 
possible unit cells, each of which is suitable for deriving 
the equivalent structural-variable sets with Hirshfeld's 
procedure. The aim is to impose such constraints upon 
the lattice constants which would ensure generation of 
only one unit cell. 

In the triclinic case a convenient choice of the cell is 
the Niggli reduced cell (Niggli, 1928) which provides a 
unique description of the lattice (Santoro & Mighell, 
1970). The conditions which define the Niggli cell can 
be written in the following form. 
I. Main conditions: 

(a) a _< b < e; 
(b) - b / 2 c  < cos 0  ̀< 0, - a / 2 c  < cos fl < O, - a / 2 b  < 

cos y <_ a/2b; 
(e) if y > n/2 then c < d, 

where 

d = (a 2 + b 2 + e 2 + 2ab cos y + 2ae cos fl 

+ 2bc c o s  0.) 1/2. 

II. Special conditions: 
1. y___ ~/2 

(a) if a = b then 0  ̀< p, 
(b) if b = c then fl < y, 
(c) if cos 0  ̀= - b / 2 c  then y = n/2, 
(d) if cos p = - a / 2 c  then y = n/2, 
(e) if cos ~, = - a / 2 b  then 13 = n/2, 
( f )  i f c =  d then  a < - 2 c c o s f l -  b cos y; 

2. y <  n/2 
(a) if a = b then 0  ̀< fl, 
(b) if b = e then fl < n - y, 
(e) if cos 0  ̀= - b / 2 c  then cos fl < - b cos y/2c, 
(d) if cos fl = - a / 2 e  then cos 0  ̀< - a cos y/2c, 
(e) if cos y = a/2b then cos 0  ̀< a cos fl/2b. 

The main conditions define the reduced cell by the three 
shortest non-coplanar lattice translations a, b, e. The 
special conditions remove ambiguities which may exist 
in particular cases of strict equality in the main 
conditions (Santoro & Mighell, 1970). 

We can now regard the above conditions as the 
scanning ranges, with certain hierarchy of the lattice 
constants implied. Namely, the lattice constant c is 
altered first, assuming the values Cmi n . . . . .  c t . . . . .  Cma x. 
[The choice of the proper range (Cmln,Cmax) depends on 
the intermolecular potential and the molecular 
dimensions.] The second constant, b, is restricted above 

by c t, the current value of c. Consequently, a should 
not exceed the current value of b. The ranges for the 
interaxial angles are further specified by the current 
values of the conjugate cell edges. 

The case y _> n/2 involves some difficulty because 
the shortest ranges for 0 ,̀ fl, y are not expressed in an 
explicit form. The optimum way to surmount this 
difficulty in computations is to assume the ranges in 
accordance with Ia and Ib, rejecting any trial set of the 
lattice constants if the condition Ic is not satisfied. 

The lattice-constant-range conditions for monoclinic 
crystals are given in Table 3. They were derived 
assuming the reduced monoclinic cell defined by two 
shortest lattice translations, a and c, and considering 
the conditions from Table 2. 

In the orthorhombic case we note that the list of 
equivalent lattice-constant sets is defined by the point 
group of the extended Cheshire group. The corre- 
sponding ranges for a, b, c, which may be also regarded 
as conditions to define the 'reduced' orthorhombic cell, 
are given in Table 4 for all point groups corresponding 
to the extended Cheshire groups of Table 1. 

Keeping the lattice constants within above ranges 
eliminates all equivalent lattice-constant sets except the 
reference one. The subsequent treatment, leading to the 
ranges for the molecular parameters t x, ty, t~, ~o, O, q/, 
should be done following essentially Hirshfeld's paper. 
The procedure is to write down the equivalent sets of 
molecular parameters using all combinations of the 
Cheshire-group operations with the molecular point- 
symmetry operations. These sets are then successively 
eliminated through restrictions on the parameter ranges 
(Hirshfeld, 1968). 

An elucidation is necessary in a boundary case, i.e. 
when one or more lattice constants is exactly equal to 

Table 3. Lattice-constant-range conditions for  mono- 
clinic crystals 

Space group 

P2.P2 r Pm.P2/m.P211m 

Pc.P2/c.P2,/c 

C2.Cm.Cc.C2/m.C2/c 

Range conditions 

a <_ c', -a /2c  < cos fl < 0 

-c/2a } 
-a / c  _< cos fl _< 0 

-a /2c  } 
-c /a  <_ cos fl <_ 0 

Table 4. Lattice-constant-range conditions for  ortho- 
rhombic crystals 

Point group of  the extended 
Cheshire group (from Table 1) Range conditions 

mmm None 
4/mmm a <_ b 
m3 a < b ; a < _ c  
m3m a <_ b < c 
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its limiting value. In this case the derivative symmet ry  
group m a y  be of  higher order than that  given by 
Hirshfeld, due to extra  symmet ry  of  the lattice. 
Consider,  for instance, the space group P21/m with its 
lat t ice-constant  ranges a < c, --a/2c < cos fl < 0 (Table 
3). In the general case (a < c, - a / 2 c  < cos fl < 0) the 
derivative group is the Cheshire group P2/m 
(Hirshfeld, 1968) but it turns to P m m m  i f a  < c and fl = 
90 °. Further ,  for a = c the derivative group is P2/m 
4/m 2/m, i f f l  = 90 °, and P2/m 6/m 2/m, i f f l  = 120 °. 
These groups should be taken instead of  P2/m in the 
corresponding boundary  case to derive the molecular  
pa ramete r  ranges.  

Thus the boundary  case is t reated as the general one 
but requires a ' bounda ry '  derivative group. Since there 
are too m a n y  situations to be considered, we do not 
systematize them, assuming that  obtaining a derivative 
symmet ry  group is a trivial procedure for a crystal- 
lographer  and m a y  be readily undertaken,  if necessary,  
for a part icular  boundary  situation. 

The author  is very grateful to Dr  R. V. Galiulin for 
his interest in this work and for several stimulating 
discussions. 
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Abstract 

The resolution attained with a JEOL 200CX electron 
microscope in top-entry configuration has allowed the direct 
elucidation of the structure of tetrahedrally bonded com- 
pounds. Computer simulation methods were used to cal- 
culate through-focus series of images at a range of 
thicknesses and the conditions for which structural features 
are interpretable on an atomic scale have been ascertained. 
In particular, various polytypes are differentiated and 
stacking faults are intuitively interpreted. 

A wide variety of compounds crystallize as stacking variants 
of the diamond lattice. For nearly all of these compounds, 
ranging from silicon carbide to the quaternary chalco- 
genides, it is easily seen that, in order to identify specific 
polytypes directly from electron micrographs, a first re- 
quirement is a minimum resolution of about 2.5 A. 

There are, of course, many other requirements, most of 
which are well known. Using a JEOL 200CX electron 
microscope in a configuration specifically chosen to maxi- 
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mize the resolution of lattice images, we have found that all 
conditions can be satisfied at an accelerating voltage of 200 
kV. This is illustrated in Figs. l(b), (c) with images of 3,3 
stacking (i.e. pseudo 6H polytype) and 3,4 stacking (i.e. 
pseudo 21R polytype) of the compound CuAsSe (Whitfield, 
1981). Our measured value of C s is somewhat less than 1 
mm so that the standard expression for resolution at the 
Scherzer focus gives a value of 2.3 A. 

As might be anticipated from the micrographs, the 
technique can be extended much further, for instance to the 
direct imaging of the intergrowth of polytypes (Fig. 2). 
Standard multislice calculations (Fig. l a) have been used in 
establishing the interpretation. In this example, correspond- 
ence between the observed and calculated image is not exact, 
in that one row of spots in the observed image is somewhat 
brighter than the rest. This arises from a slight tilt about the c 
axis, a delicate effect which transforms a glide line into a 
reflexion line. Effects of this type will be discussed in a 
forthcoming publication. 

The particular material chosen for illustration would 
appear to be unpromising, since the periodicity in the 
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